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CHAPTER 3 

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH ASSESSMENT 

3.0 INTRODUCTION 

This chapter outlines how probabilistic analysis may be applied to human health risk assessments 
in the Environmental Protection Agency’s (EPA) Superfund program.  The paradigm for human health 
risk assessment as described in EPA’s Risk Assessment Guidance for Superfund (U.S. EPA, 1989), 
includes data collection/evaluation in addition to exposure and toxicity assessment and risk 
characterization. Although the strategies and methods used in collecting and analyzing data can 
significantly impact the uncertainty in a risk estimate, they are issues relevant to risk assessment in 
general, and are addressed in other guidance documents, such as EPA’s Guidance for Data Useability in 
Risk Assessment (U.S. EPA, 1992b).  RAGS Volume 3: Part A focuses on a tiered approach for 
incorporating quantitative information on variability and uncertainty into risk management decisions. 

3.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES 

Exhibit 3-1 gives the general equation 
used for calculating exposure, often expressed as 
an average daily intake.  In a point estimate 
approach, single values (typically a mixture of 
average and high-end values) are input into the 
equation.  In probabilistic risk assessment (PRA), 
the only difference is that a probability 
distribution, rather than single value, is specified 
for one or more variables.  A Monte Carlo 
simulation is executed by repeatedly selecting 
random values from each of these distributions 
and calculating the corresponding exposure and 
risk. For the majority of PRAs, it is expected that 
probability distributions will be used to 
characterize inter-individual variability, which 
refers to true heterogeneity or diversity in a 
population. Thus, variability in daily intake, for 
example, can be characterized by combining 
multiple sources of variability in exposure, such as ingestion rate, exposure frequency, exposure 
duration, and body weight.  Variability in chemical concentrations (Chapter 5 and Appendix C) and the 
toxicity term in ecological risk assessment (Chapter 4) may also be considered in risk calculations. 

E 3-1 

GENERAL E E

where, 

I = 
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BW = body weight 

AT = 
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E 3-2 

D C 3 

95% UCL for mean n) was 

time. th percentile (see below), which is a 

th

95th  - The number in a distribution that is greater than 95% of the other values of the distribution, and less 

interpolated from among two values. 

Arithmetic Mean

It can be 

Credible Interval Credible intervals may 
th

CTE Risk - The estimated risk corresponding to the central tendency exposure. 

of occurrence for a random independent variable. Each value c
x c. 

Frequency Distribution/Histogram
from a population. 
across that range. 

High-end Risk
th percentile. 

Low-end Risk - A risk descriptor representing the low-end, or lower tail of the risk distribution, such as the 5th or 25th 

percentile. 

.Parameter
For example, a truncated normal probability distribution may 

that point. 

1989). 
still within the range of possible exposures. 
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XHIBIT 

EFINITIONS FOR HAPTER 

 - The one-sided 95% upper confidence limit for a population mean; if a sample of size (
repeatedly drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the 

It is a measure of uncertainty in the mean, not to be confused with the 95
measure of variability.  As sample size increases, the difference between the UCL for the mean and the true mean 
decreases, while the 95  percentile of the distribution remains relatively unchanged. 

 percentile
than 5% of the values.  When estimated from a sample, this quantity may be equal to an observed value, or 

 (AM) - A number equal to the average value of a population or sample.  Usually obtained by summing 
all the values in the sample and dividing by the number of values (i.e., sample size). 

Assessment Endpoint - The specific expression of the population or ecosystem that is to be protected.  
characterized both qualitatively and quantitatively in the risk assessment. 

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in the population, 
usually considered to be the arithmetic mean or median of the risk distribution. 

 - A range of values that represent plausible bounds on a population parameter.  
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95  percentile risk). 
The term is introduced as an alternative to the term confidence interval when the methods used to quantify 
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches. 
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the 
literature—using professional judgment, these estimates may support a decision to describe a range of possible 
values for the arithmetic mean. 

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF or PMF, gives the cumulative probability 
 of the function is the probability that a random 

observation  will be less than or equal to 

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an 
exposure unit.  Estimates of the EPC represent the concentration term used in exposure assessment. 

 - A graphic (plot) summarizing the frequency of the values observed or measured 
It conveys the range of values and the count (or proportion of the sample) that was observed 

 - A risk descriptor representing the high-end, or upper tail of the risk distribution, usually considered to 
be equal to or greater than the 90

 - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the 
location, scale, shape, or bounds of the distribution.  
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds]. 
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean 
ingestion rate). 

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random 
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range about 

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable. 
The mass at a point refers to the probability that the variable will have a value at that point. 

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S. EPA, 
The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that is 
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E 3-2 

D C 3— Continued 

their relative contributions to model output variability and uncertainty. Common metrics of sensitivity include: 

< - A statistic r that measures the strength and direction of linear 
(r2) is the 

< - Ratio of the change in model output per unit change in an input variable; also called 
elasticity. 

< - A “distribution free” or nonparametric statistic r that 
measures the strength and direction of association between the ranks of the values (not the values 

r2 . 

concern”. 

XHIBIT 

EFINITIONS FOR HAPTER 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the 
values of the model’s input(s).  Sensitivity analysis can provide a quantitative ranking of the model inputs based on 

Pearson Correlation Coefficient
association between the values of two quantitative variables.  The square of the coefficient 
fraction of the variance of one variable that is explained by the variance of the second variable. 

Sensitivity Ratio

Spearman Rank Order Correlation Coefficient

themselves) of two quantitative variables.  See Pearson (above) for 

Target Population - The set of all receptors that are potentially at risk.  Sometimes referred to as the “population of 
A sample population is selected for statistical sampling in order to make inferences regarding the target 

population (see Appendix B, Section B.3.1, Concepts of Populations and Sampling). 
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Figure 3-1 shows a hypothetical example of an input distribution for drinking water ingestion 
rate. Assume that survey data for drinking water ingestion rates were compiled in order to select and fit a 
probability distribution.  One of the first steps in exploring the data set may be to plot a frequency 
distribution. In the graph, the height of the bars (the y-axis) represents the relative frequency of ingestion 
rates in the population and the spread of the bars (the x-axis) is the varying amounts of water ingested 
(L/day). Since ingestion rate is a continuous random variable, the probability distribution can also be 
represented graphically with a probability density function (PDF).  Assume that the following parameters 
are estimated from the sample: arithmetic mean=1.36, standard deviation=0.36, geometric mean=1.31, 
and geometric standard deviation=1.30.  These parameter estimates may be used to define a variety of 
probability distributions, including a 2-parameter lognormal distribution.  The fit of the lognormal 
distribution can be evaluated by visual inspection using the PDF given by Figure 3-1, or by a lognormal 
probability plot (see Appendix B). 

The y-axis for a PDF is referred to as the probability density, where the density at a point on the 
x-axis represents the probability that a variable will have a value within a narrow range about the point. 
This type of graph shows, for example, that there is a greater area under the curve (greater probability 
density) in the 1-2 L/day range than 0-1 L/day or 2-3 L/day.  That is, most people reported consuming 
1-2 L/day of drinking water.  By selecting a lognormal distribution to characterize inter-individual 
variability, we can state more precisely that 1 L/day corresponds to the 15th percentile and 2 L/day 
corresponds to the 95th percentile, so approximately 80% (i.e., 0.95–0.15=0.80) of the population is likely 
to consume between 1 and 2 L/day of drinking water. 

Figure 3-1.  Example of a frequency distribution for adult drinking water ingestion rates, overlaid by 

a grap h of the p rob ability de nsity functio n (PD F) for a  logno rmal d istribution define d by the  samp le 

statistics.  The distribution represents inter-individual variability in water intakes and is characterized 

by two parameters.  Typically, the geometric mean (GM ) and geometric standard deviation (GSD), or 

the arithmetic mean (AM) and arithmetic standard deviation (SD) are presented to characterize a 

lognormal distribution. 
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3.1.1 DEVELOPING DISTRIBUTIONS FOR EXPOSURE VARIABLES 

When site-specific data or representative surrogate data are available, a probability distribution 
can be fit to that data to characterize variability.  Appendix B describes how to fit distributions to data, 
how to assess the quality of the fit and discusses topics such as the sensitivity of the tails of the 
distribution to various PDFs, and correlations among variables.  Many of the issues discussed below 
regarding the use of site-specific data or surrogate data are relevant to both point estimate risk assessment 
and PRA. 

For the majority of the exposure variables, such as exposure duration, water intake rates, and 
body weight, site-specific data will not be available.  The risk assessor will have to either select a 
distribution from existing sources, or develop a distribution from published data sets and data summaries. 
Examples of sources for these distributions and data sets are EPA’s Exposure Factors Handbook (U.S. 
EPA, 1997a,b,c), Oregon Department of Environmental Quality’s Guidance for Use of Probabilistic 
Analysis in Human Health Risk Assessment (Oregon DEQ, 1998), and the scientific literature.  An 
appropriate PDF should be determined in collaboration with the regional risk assessor.  The process by 
which PDFs are to be selected and evaluated should be described in the workplan.  EPA’s Superfund 
program is in the process of developing a ranking methodology to evaluate data representativeness 
relevant to various exposures scenarios. Following peer review and project completion, the results will 
be posted on EPA Superfund web page. 

L	 At this time, EPA does not recommend generic or default probability 
distributions for exposure variables. 

Regardless of whether a PDF is derived from site-specific measurements or obtained from the 
open literature, the risk assessor should carefully evaluate the applicability of the distribution to the 
target population at the site.  The distribution selected should be derived from the target population or 
from a surrogate population that is representative of the target population at the site.  For example, a 
distribution based on homegrown vegetable consumption in an urban population would not be 
representative for a farming population in the Midwest.  If such a distribution were to be used, (and no 
other data were available), the uncertainty and bias that this PDF would impart to the risk estimate should 
be communicated to the risk decision makers.

 For purposes of risk management decision making, the significance of not having site-specific 
data should be evaluated in the context of representativeness and sensitivity analysis.  If published data 
are representative of the potentially exposed population, then site-specific data may be unnecessary. For 
example, body weights of children and adults have been well studied from national surveys and can 
generally be considered reasonable surrogates for use in site risk assessments.  Furthermore, even if a 
variable is likely to vary among different exposed populations, it may not contribute greatly to the 
variance or uncertainty in risk estimates.  In this case, surrogate data may also be used with confidence in 
the risk estimate.  In addition, the PRA may be simplified by using point estimates instead of probability 
distributions for the “less sensitive” exposure variables.  In part, the decision to use a point estimate in 
lieu of a probability distribution must balance the benefit of simplifying the analysis and the 
communication process (see Chapter 6), against the reduction (however small) in the variance of the risk 
distribution.  The utility of sensitivity analysis in identifying the important factors in a risk estimate is 
discussed further below and in Appendix A. 
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It is also important to evaluate the sample design and sample size when deciding to apply a 
distribution to a specific site.  Depending on the situation, a very large data set derived from a national 
population may be more useful than a site-specific data set derived from a small, incomplete, or poorly 
designed study.  Appendix B provides additional discussion on how to evaluate the data and studies that 
form the basis for a distribution.  Often, the question arises regarding the appropriateness of combining 
data sets to derive a PDF.  Before combining data sets, a careful evaluation should be made of the 
representativeness of the study populations, and the similarity in study designs and quality.  In addition, 
statistical tests may be used to determine whether or not data sets are compatible with a common 
probability distribution (Hedges and Olkin, 1985; Stiteler et al., 1993).  In general, risk assessors should 
be reluctant to combine data sets for the purpose of developing a PDF that characterizes variability.  Due 
to the number of potential differences inherent in the study design, alternative data sets may provide a 
better measure of uncertainty in the probability distribution and parameter estimates, rather than a means 
of increasing the overall sample size for defining a single probability distribution.  For example, if 
multiple data sets are available, a more informative approach may be to incorporate each data set into the 
PRA in a separate analysis, as a form of sensitivity analysis on the choice of alternative data sets. 

Each probability distribution used in a Monte Carlo Analysis (MCA) should be presented with 
sufficient detail that the analysis can be reproduced (see Chapter 1, Section 1.4, Condition #2). This 
information may be presented in tabular and/or graphical summaries.  Important information for a 
summary table would include a description of the distribution type (e.g., lognormal, gamma, etc.), the 
parameters that define the distribution (e.g., mean and standard deviation, and possibly upper and lower 
truncation limits for a normal distribution), units, and appropriate references (see Table 3-6, for 
example). The table should also indicate whether the distribution describes variability or uncertainty. 
The report should discuss the representativeness of the data and why a particular data set was selected if 
alternatives were available.  Graphical summaries of the distributions may include both PDFs and 
cumulative distribution functions (CDFs), and should generally be used to document distributions that 
characterize site-specific data. 

3.1.2 CHARACTERIZING RISK USING PRA 

Quantitative risk characterization involves evaluating exposure (or intake) estimates against a 
benchmark of toxicity, such as a cancer slope factor or a noncancer hazard quotient.  The general 
equation used for quantifying cancer risk from ingestion of contaminated soil is shown in Exhibit 3-3, 
and the equation for noncarcinogenic hazard is shown in Exhibit 3-4.  A Hazard Index is equal to the sum 
of chemical-specific Hazard Quotients. 

At this time, this guidance does not propose probabilistic approaches for dose-response in human 
health assessment and, further, discourages undertaking such activities on a site-by-site basis. Such 
activities require contaminant-specific national consensus development and national policy development 
(see Chapter 1, Section 1.4.1).  Chapter 4 discusses methods for applying probabilistic approaches to 
ecological dose-response assessment.  

The probabilistic calculation of risk involves random sampling from each of the exposure 
variable distributions. The output of this process is a distribution of risk estimates.  When the calculation 
of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to sample the 
variables at random, the resulting distribution of risk estimates can be displayed in a similar fashion.  The 
type of summary graph used to convey the results of a MCA depends on the risk management needs.  For 
example, Chapter 1, Figure 1-3 shows how a PDF for risk might be used to compare the probabilistic 
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estimate of the RME risk (e.g., 95th percentile) with a risk level of concern.  This type of summary can 
also be used to effectively illustrate the relationship between the RME risk determined from point 
estimate and probabilistic approaches.   

E 3-3 

E CANCER RISK 

where, 

C = ED = 

IR = BW = body weight (kg) 

CF = conversion factor (1E-06 kg/mg) AT = 

EF = exposure frequency (days/year) CSF = -1 

E 3-4 

E NONCANCER HAZARD Q

= 

RfC = mg/m3) 

XHIBIT 

QUATION FOR 

Example for Soil Ingestion 

concentration in soil (mg/kg) exposure duration (yea rs) 

soil ingestion rate  (mg/d ay) 

averaging time (d ays) 

oral cance r slope facto r (mg/k g-day)

XHIBIT 

QUATION FOR UOTIENT 

where , 

RfD reference d ose, o ral or d erma lly adjusted (m g/kg-day) 

reference concentration, inhalation (

In addition, the CDF can be especially informative for illustrating the percentile corresponding to 
a particular risk level of concern (e.g., cancer risk of 1E-04 or Hazard Index of 1).  Figure 3-2 illustrates 
both the PDF and CDF for risk for a hypothetical scenario.  Factors to consider when applying the PDF 
or CDF are discussed in Chapter 1, Exhibit 1-3.  When in doubt about the appropriate type of summary to 
use, both the PDF and CDF should be provided for all risk distributions.  At a minimum, each summary 
output for risk should highlight the risk descriptors of concern (e.g., 50th, 90th, 95th, and 
99.9th percentiles). It can also be informative to include the results of the point estimate analysis—the 
risks corresponding to the central tendency exposure (CTE) and the reasonable maximum exposure 
(RME). 
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Figure 3-2.  Hypothetical PRA results showing a PDF (top panel) and CDF (bottom panel) for 

cancer risk with selected summary statistics.  The CDF rises to a maximum cumulative 

probability of 1.0.  The CDF clearly shows that the level of regulatory concern chosen for this 

example (1E-06) falls between the 90th and 95th percentiles of the risk distribution. 
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3.2 ROLE OF THE SENSITIVITY ANALY SIS 

Prior to conducting a PRA, it is worthwhile to review several points pertaining to the sensitivity 
analysis.  As shown in Chapter 2 (Figures 2-1 and 2-2), sensitivity analysis can play an important role in 
decision making at each tier of the tiered process.  Beginning with Tier 1, a point estimate for risk should 
be calculated prior to conducting a PRA.  Based on the results of the point estimate, the risk assessor and 
risk decision makers should determine whether a probabilistic analysis will offer additional benefit.  One 
factor in this decision may be the results of a sensitivity analysis.  A primary objective of the sensitivity 
analysis is to determine which variables and pathways most strongly influence the risk estimate.  At 
many Superfund sites, an estimate of cumulative risk considers contamination in multiple media, moving 
through multiple pathways and interacting with a number of receptors.  Depending on the complexity of 
the site, and the modeling approaches, a risk assessment may involve one exposure pathway and few 
variables, or multiple pathways with many variables (e.g., multimedia fate and transport models). 
However, resources and time are often limited.  The sensitivity analysis is invaluable in focusing these 
limited resources on the most influential variables and pathways.  

Several methods for conducting sensitivity analysis are described in Appendix A.  It is important 
to note that when a sensitivity analysis is performed and the major variables are identified, this does not 
mean that the less influential pathways and variables should be eliminated from the risk assessment.  It 
means that because they are not major contributors to the variability or uncertainty in risk, they can be 
described with point estimates without affecting the risk management decision.  If distributions are 
readily available for these less influential variables, one may use distributions.  The key goal is to provide 
a comprehensive risk characterization that is scientifically credible and sufficient for risk decision 
making.  The time and effort required to achieve various levels of complexity should be weighed against 
the value of the information provided to the risk managers.  

Additionally, if a variable is specified as influential in the sensitivity analysis, this does not 
automatically mean that a distribution has to be developed for this variable.  If the risk assessor feels that 
data are simply not sufficient from which to develop a distribution, then a plausible point estimate can be 
used. The risk assessor should be aware of a possible problem arising from using point estimates in the 
absence of data adequate to support a distribution.  If a variable has the potential to significantly impact 
the risk outcome, and a very high-end or low-end point estimate is used in the PRA, this has the potential 
to right-shift or left-shift the final distribution of risk.  Even though there might not be enough data to 
develop a distribution of variability for an influential variable, it would be prudent to communicate the 
importance of this data gap to the risk decision makers, and perhaps run multiple simulations with several 
plausible input distributions for that variable.  Communication of this uncertainty may persuade the risk 
decision makers to collect additional data to better define the variable. 
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3.3 EXPOSURE POINT CONCENTRATION TERM 

A brief discussion of the concentration term is provided below.  A more complete discussion of 
the concentration term in PRA is provided in Appendix C.  The reader is also referred to Chapter 5 on 
development of PRGs. 

The major source of uncertainty in Superfund risk assessments is often incomplete knowledge of 
the concentration of one or more chemicals in various exposure media.  In any risk assessment, the 
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant, 
(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time 
scale of the toxicity of the chemical(s).  

Contaminant concentrations contacted by a receptor are likely to vary depending on the spatial 
variability of contamination and the movements of the receptor.  Different individuals may be exposed to 
different concentrations based on inter-individual variability in activity patterns.  If information regarding 
activity patterns is unavailable, receptors are typically assumed to exhibit random movement such that 
there is an equal probability of contacting any area within the exposure unit (EU).  An EU is defined as 
the geographical area in which a receptor moves and contacts contaminated medium during the period of 
the exposure duration. In addition, in Superfund risk assessments, the toxicity criteria are often based on 
health effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily 
intake over a period of 30 years).  Hence, the most appropriate expression for the concentration term, for 
the majority of risk assessments, is one that characterizes the long-term average exposure point 
concentration within the EU.  

L	 The most appropriate expression of the exposure point concentration term 
for chronic exposure will characterize the long-term average concentration 
experienced by a receptor within the exposure unit. 

In point estimate risk assessments, the exposure point concentration term is usually calculated as 
the 95% upper confidence limit (95% UCL) of the arithmetic mean because of the uncertainty associated 
with estimating the true (i.e., population) mean concentration at a site.  If the sampling density is sparse 
relative to the size of the EU, the uncertainty may be high due to the relatively small number of 
measurements available to estimate the mean concentration within the EU.  The decision to use the upper 
confidence limit to define the concentration term introduces a measure of protectiveness by reducing the 
chance of underestimating the mean.  Although there will be situations in which modeling variability in 
concentration will be the appropriate choice (e.g., non-random movement within an EU, acute exposure 
events, migration of groundwater contaminant plume, migration of fish, etc.), in most cases, 
characterization of the concentration term will focus on uncertainty.  Appendix C provides a more 
complete discussion on characterizing both variability and uncertainty in the concentration term. 
Table 3-1 summarizes a number of appropriate methods for characterizing uncertainty in the parameter of 
an exposure variable, such as the arithmetic mean of the concentration term. 
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3.4 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES 

Uncertainty is described as a lack of knowledge about factors affecting exposure or risk.  To 
evaluate regulatory options, risk assessors are expected to translate the available evidence, however 
tentative, into a probability of occurrence of an adverse health effect.  Data from a sample or surrogate 
population are used to develop estimates of exposure and risk in a specific target population (see 
Section 3.1.4 and Appendix B, Section B.3.1).  This extrapolation requires assumptions and inferences 
that have inherent strengths and limitations, and may bias the outcome of the risk estimate.  For example, 
a common assumption in risk assessments for carcinogens is that a contaminant concentration within the 
boundaries of a hazardous waste site represents the concentration that a receptor is exposed to throughout 
the period of exposure, with the corresponding dose averaged over the course of a lifetime.  This 
assumption may be conservative (i.e., result in overestimation of exposure) if it is unlikely that receptors 
will be exposed at the hazardous waste site for the entire exposure duration.  It is incumbent on the risk 
assessor to clearly present the rationale for the assumptions used in a risk assessment, as well as their 
implications and limitations.    

U.S. EPA guidance, including the Exposure Assessment Guidelines (U.S. EPA, 1992a), Exposure 
Factors Handbook (U.S. EPA, 1997a,b,c), and Guiding Principles for Monte Carlo Analysis (U.S. EPA, 
1997d) have classified uncertainty in exposure assessment into three broad categories: 

(1) 	Parameter uncertainty - uncertainty in values used to estimate variables of a model; 
(2) 	Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended 

use; and 
(3) 	Scenario uncertainty - uncertainty regarding missing or incomplete information to fully 

define exposure. 

Each source of uncertainty is described in detail below, along with strategies for addressing them in 
PRA. 

3.4.1 PARAMETER UNCERTAINTY 

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified 
in site-specific risk assessments at hazardous waste sites.  Parameter uncertainty can occur in each step of 
the risk assessment process from data collection and evaluation, to the assessment of exposure and 
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection 
process, imprecision in the analytical measurements, and extrapolation from surrogate measures to 
represent the parameter of interest.  For example, soil data collected only from the areas of highest 
contamination, rather than the entire area that a receptor is expected to come into contact, will result in a 
biased estimate of exposure.  

In general, parameter uncertainty can be quantified at any stage of the tiered process, including 
point estimate analysis (Tier 1), one-dimensional Monte Carlo analysis (1-D MCA) (Tier 2), and two-
dimensional Monte Carlo analysis (2-D MCA) (Tier 3).  In the point estimate approach, parameter 
uncertainty may be addressed in a qualitative manner for most variables.  For example, the uncertainty 
section of a point estimate risk assessment document might state that an absorption fraction of 100% was 
used to represent the amount of contaminant in soil absorbed from the gastrointestinal (GI) tract, and as a 
result, the risk estimate may overestimate actual risk.  In addition, a sensitivity analysis may be 
performed, wherein one input variable at a time is changed, while leaving the others constant, to examine 
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the effect on the outcome.  In the case of absorption from the GI tract, different plausible estimates of the 
high-end, or RME absorption fraction might be used as inputs to the risk equation.  The differences in the 
risk estimates would reflect uncertainty in the RME absorption fraction.  

Quantitative approaches for characterizing parameter uncertainty in exposure variables in a 
Monte Carlo simulation are summarized in Table 3-1.  If uncertainty in only a few parameter values is of 
interest, multiple 1-D MCA simulations can yield the same results as a 2-D MCA simulation, but without 
the time and effort of a 2-D MCA.  An example illustrating this concept is given in Table 3-2.  With 
multiple 1-D MCA simulations, variability is characterized in one or more variables using probability 
distributions for variability (PDFv’s), and uncertainty in a parameter is characterized with a series of 
different point estimates from a probability distribution for uncertainty (PDFu) (e.g., 95% lower 
confidence limit LCL [95% LCL], sample mean, and 95% UCL).  In a 2-D MCA simulation, variability 
is characterized in one or more variables using PDFv’s, and uncertainty in one or more parameters is 
characterized with PDFu’s.  With both approaches, the influence of the parameter uncertainty can be 
presented as a credible interval or confidence interval (CI) around the risk distribution, depending on 
how the PDFu’s are defined.  When only a few sources of parameter uncertainty are quantified, multiple 
1-D MCA simulations are preferred over a 2-D MCA because the approach is easier to use and 
communicate.  However, if the goal is to explore the effect that many sources of parameter uncertainty 
may have on the risk estimates simultaneously, a 2-D MCA is preferred.  Iterative 1-D MCA simulations 
with different combinations of confidence limits may be impractical. 

Table 3-1.  M ethod s for Charac terizing P aram eter U ncerta inty with M onte C arlo S imulatio ns. 

Approach Example of M odel Input M ethod Example of M odel Output 

Single Point 

Estimate

 • 95% UCL 1-D MCA PDFv1 for risk, calculated using the 95% 

UCL for one parameter. 

Multiple Point 

Estimates

 • 95% LCL

 • sample mean 

• 95% UCL 

1-D MCA Three PD Fv’s for risk, representing the 

90%  CI for each percentile of the risk 

distribution.2  The 90 % C I only ac counts 

for uncertainty in a single parameter (not 

multiple parameters). 

Par ame tric 

PDFu1 

PDF u for the mean based on the 

sampling distribution, derived from 

a Student’s t-distribution. 

2-D MCA One PDF v for risk with confidence 

intervals at each percentile of the risk 

distribu tion.  T he CI reflects uncerta inty in 

one or m ore parameters. 

No n-parame tric 

PDFu 

PDFu for the mean based on 

boo tstrap resamp ling methods. 

2-D MCA Same as parametric probability distribution 

for unc ertainty. 

1Probability distribution for uncertainty (PDFu) and probability distribution for variability (PDFv). 
2The 95% UCL for the concentration term represents a 1-sided confidence interval (CI), meaning there is a 95%  probability that 
the value is greater than or equal to the mean.  Similarly, the 95% LCL would represent the 1-sided CI in which there is a 95% 
probability that the value is less than or equal to the mean.  Both values are percentiles on the probability distribution for 
uncertainty (PDFu), also called the sampling distribution for the mean.  Together, the 95% LCL and 95% UCL are equal to the 
2-sided 90% confidence interval only for cases in which the PDFu is symmetric.  For example, the sampling distribution for the 
arithmetic mean of a sample from a normal distribution with an unknown variance is described with the symmetric Student’s 
t-distribution, whereas the PDFu for the mean of a lognormal distribution is asymmetric.  In order to compare the results of 
multiple 1-D MCA simulations and a 2-D MCA simulation, the same methodology should be employed to define the PDFu and 
the corresponding confidence limits.  
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It is generally incorrect to combine a PDFu for one parameter (e.g., mean of the concentration 
term) with one or more PDFv’s in other exposure factors when conducting a 1-D MCA for variability. 
However, distributions for uncertainty and variability may be appropriately combined in a 2-D MCA.  As 
discussed in Appendix D, with 2-D MCA, a clear distinction should be made between probability 
distributions that characterize variability (PDFv) and parameter uncertainty (PDFu).  A 2-D MCA 
propagates the uncertainty and variability distributions separately through an exposure model, thereby 
making it possible to evaluate the effect of each on the risk estimates. 

Example: Comparison of Multiple Point Estimates of Uncertainty in 1-D MCA, and Distributions of 
Uncertainty in 2-D MCA 

Table 3-2 illustrates an application of the approaches presented in Table 3-1 for quantifying 
variability and parameter uncertainty.  This is a hypothetical example, and no attempt was made to use 
standard default assumptions for exposure variables.  Two sources of variability are quantified: (1) inter-
individual variability in exposure frequency (EF), characterized by a triangular distribution, and (2) inter-
individual variability in exposure duration (ED), characterized by a truncated lognormal distribution.  In 
addition, two sources of uncertainty are presented: (1) a point estimate for soil and dust ingestion rate, 
intended to characterize the RME; and (2) an upper truncation limit of the lognormal distribution for ED, 
intended to represent a plausible upper bound for the exposed population.  Methods for quantifying these 
sources of uncertainty are discussed below.  Additional sources of uncertainty may also have been 
explored.  For example, the choice of a triangular distribution for a PDFv may be provocative for some 
risk assessors, since there are few cases in which empirical data suggest a random sample is from a 
triangular distribution.  Nevertheless, triangular distributions may be considered rough, or “preliminary” 
distributions (see Chapter 2 and Appendix B, Section B.2) for cases when the available information 
supports a plausible range and central tendency.  

The choice of distributions is a potential source of uncertainty that can be explored by rerunning 
simulations with each alternative, plausible choice, and examining the effect on the RME risk. 
Simulations with preliminary simulations may yield at least three different outcomes.  First, this type of 
sensitivity analysis can help guide efforts to improve characterizations of variability for selected 
variables that have the greatest affect on the risk estimates.  Second, results may provide justification to 
exit the tiered process without continuing with additional Monte Carlo simulations since further effort 
would be unlikely to change the risk management decision.  Finally, if the major sources of uncertainty 
can be clearly identified, a subset of the less sensitive variables may be defined by point estimates 
without significantly reducing the uncertainty in the risk estimates. 

Parameter uncertainty can be quantified for both point estimates and PDFv’s.  In this example, 
both types of inputs (i.e., point estimates and PDFv’s) are presented as sources of parameter uncertainty: 
the RME point estimate for soil and dust ingestion rate (IRsd), and the upper truncation limit on a PDFv 
for ED. For IRsd, assume that three different studies provide equally plausible values for the RME: 50, 
100, and 200 mg/day.  A uniform PDFu is specified to characterize this range of plausible values.  For 
ED, assume that the maximum value reported from a site-specific survey was 26 years, but surrogate data 
for other populations suggest the maximum may be as long as 40 years.  A uniform PDFu is specified to 
characterize this range of plausible values as well. 

In Cases 1-3, the impact of uncertainty in IRsd and ED was evaluated using a series 1-D MCA 
simulations. Inputs for uncertain parameters associated with IRsd and ED in Case 1, 2, and 3 represent 
the minimum, central tendency, and maximum values, respectively.  Each simulation yields a different 
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risk distribution based on different combinations of point estimates for parameters.  Although a PDFu 
was specified for IRsd, it would have been incorrect to combine the PDFu with the PDFv’s for EF and 
ED in a 1-D MCA because the result would have been a single distribution of risk that co-mingled 
uncertainty and variability. 

In Case 4, a single 2-D MCA simulation was run using the PDFu’s for uncertainty and the 
PDFv’s for variability.  By propagating variability and uncertainty separately, the 2-D MCA yields a 
series of distributions of risk, from which credible intervals can be calculated for each percentile of the 
CDF. 

Table 3-2.   Example of 1-D MCA and 2-D MCA. 

Va riab le 

Type of 

Input 

1-D MCA 2-D MCA 

Case 1 Case 2 Case 3 Case 4 

C (mg/kg) pt estimate 500 500 500 500 

IRsd 

(mg/d ay) 

pt estimate 50 100 200 see below 

PDF u for 

pt estimate 

uniform (50, 200)a 

CF (kg/mg) pt estimate 1E-06 1E-06 1E-06 1E-06 

EF 

(days/year) 

PDF v triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

ED (years) PDFv T-lognormal 

mean = 9 

stdv  = 10 

max = 26 

T-lognormal 

mean = 9 

stdv  = 10 

max = 33 

T-lognormal 

mean = 9 

stdv  = 10 

max = 40 

T-lognormal 

mean = 9 

stdev = 10 

max = PDFu (see below) 

PDFu for 

parameter of 

PDFv 

max ~ uniform (26, 40)b 

BW  (kg) pt estimate 70 70 70 70 

AT (days) pt estimate 25550 25550 25550 25550 

CSF 

(mg/kg-day)-1 

pt estimate 1E-01 1E-01 1E-01 1E-01 

aUncertainty in the RME point estimate, defined by a uniform distribution with parameters (minimum, maximum). 
bUncertainty in the upper truncation limit of the lognormal distribution, defined by a PDFv with parameters (mean, standard 
deviation, maximum) and a PDFu for the maximum defined by a uniform distribution with parameters (minimum, 
maximum). 
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Monte Carlo Simulation Results 

Figures 3-3 and 3-4 illustrate CDFs for risk produced from Monte Carlo simulations using 
Crystal Ball® 2000.  The 1-D MCA simulations (Figure 3-3) were run with 10,000 iterations and Latin 
Hypercube sampling.  The 2-D MCA simulation (Figure 3-4) was run with 250 iterations of the outer 
loop (uncertainty) and 2,000 iterations of the inner loop (variability).  Details regarding 2-D MCA 
simulation are given in Appendix D. 

Figure 3-3 shows CDFs for risk based on three simulations of a 1-D MCA simulation.  Each 
simulation used a different combination of plausible estimates of the RME value for IRsd and the upper 
truncation limit for ED, as discussed above.  The results provide a bounding estimate on the risk 
distribution given these two sources of uncertainty.  The 95th percentile risk, highlighted as an example of 
the RME risk estimate, may range from approximately 7E-06 to 3.5E-05. 

5

Figure 3-4 shows a single CDF for risk, representing the central tendency risk distribution.  This 
CDF was derived by simulating uncertainty in the risk distribution using 2-D MCA.  For this example, 
the 2-D MCA yields 250 simulations of the risk distributions for variability, so that there are 
250 plausible estimates of each percentile of the risk distribution.  In practice, more than 250 simulations 
may be needed to adequately quantify uncertainty in the risk distribution.  Results of a 2-D MCA can be 
presented as probability distributions of uncertainty, or box-and-whisker plots of uncertainty at selected 
percentiles of the risk distributions.  Figure 3-4 shows the central tendency (50th percentile) estimate of 
uncertainty for the entire CDF of risk.  In addition, a box-and-whisker plot is shown at the 95th percentile 
of the CDF.  Selected statistics for the box-and-whisker plot are included in a text box on the graphic 
(i.e., minimum; 5th, 50th, and 95th percentiles, and maximum).  The 90% credible interval is given by the 

th and 95th percentiles. For this example, the 90% credible interval for the 95th percentile of the risk 
distribution is: [9.1E-06, 3.1E-05]. 

Figures 3-3 and 3-4 demonstrate that the two approaches (i.e., multiple 1-D MCA and 2-D MCA) 
can yield the same results.  However, when there are numerous sources of uncertainty, 2-D MCA offers 
at least two advantages over multiple 1-D MCA simulations: (1) 2-D MCA allows the multiple sources of 
uncertainty to be included simultaneously so the approach is more efficient than a series of 1-D MCA 
simulations; and (2) multiple 1-D MCA simulations yield multiple estimates of the RME risk, but it is not 
possible to characterize the uncertainty in the RME risk in quantitative terms; a 2-D MCA yields a PDFu 
for RME risk, which allows for statements regarding the level of certainty that the RME risk is above or 
below a risk level of concern. 

The 95th percentile is a focus of this example because it is a recommended starting point for 
determining the risk corresponding to the RME.  Chapter 7 provides guidance to the risk decision makers 
on choosing an appropriate percentile (on a distribution of variability) within the RME risk range (90th to 
99.9th percentiles). The chapter also includes a qualitative consideration of the uncertainty or confidence 
surrounding a risk estimate in the decision-making process. 
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Figure 3-3 

Figure 3-4 
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3.4.2 SCENARIO AND MODEL UNCERTAINTY 

All models are simplified representations of complex biological and physical processes.  As 
such, they, and the scenarios to which they are applied, may introduce a significant source of uncertainty 
into an exposure and risk estimate.  Models may exclude important variables or important pathways of 
exposure, ignore interactions between inputs, use surrogate variables that are different from the target 
variables, or they may be designed for specific scenarios and not others.  As a result, a model may not 
adequately represent all aspects of the phenomena it was intended to approximate or it may not be 
appropriate to predict outcomes for a different type of scenario.  For example, a model intended to 
estimate risk from continuous, steady state exposures to a contaminant may not be appropriate or 
applicable for estimating risk from acute or subchronic exposure events.  In any risk assessment, it is 
important to understand the original intent of a model, the assumptions being made in a model, what the 
parameters represent, and how they interact.  Based on this knowledge, one can begin to understand how 
representative and applicable (or inapplicable) a model may be to a given scenario.  If multiple models 
exist that can be applied to a given scenario, it may be useful to compare and contrast results in order to 
understand the potential implications of the differences.  The use of multiple models, or models with 
varying levels of sophistication, may provide valuable information on the uncertainty introduced into a 
risk estimate as the result of model or scenario uncertainty.  The collection of measured data as a reality 
check against a given parameter or the predicted model outcome (such as the collection of vegetable and 
fruit contaminant data to compare against modeled uptake into plants) is also useful in attempting to 
reduce or at least gain a better understanding of model and scenario uncertainty. 

3.5 EXAM PLE OF PRA FOR HUMAN HEALTH 

The following hypothetical example provides a conceptual walk-through of the tiered approach 
for PRA in Superfund risk assessment.  The example begins with a baseline human health point estimate 
risk assessment (Tier 1) and moves to Tier 2, in which multiple iterations of a 1-D MCA are run using 
default and site-specific assumptions for input distributions.  The general concepts associated with the 
tiered approach are discussed in Chapter 2, and a similar example for ecological risk assessment is given 
in Chapter 4.  The 1-D MCA results are based on simulations with Crystal Ball® 2000 using 
10,000 iterations and Latin Hypercube sampling.  These settings were sufficient to obtain stability (i.e., 
<1% difference) in the 95% percentile risk estimate.  The example is presented in Exhibit 3-5.  Tables 
and figures supporting the example are given immediately following the exhibit. 
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EXHIBIT 3-5 

USING THE TIERED PROCESS FOR PRA 

HYPOTHETICAL CASE STUDY FOR HUMAN HEALTH RISK ASSESSMENT 
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Fig ure 3-5 .  Site map for future wildlife refuge showing boundaries for the exposure 

unit and potential hotspot, as well as sampling locations (n=35).  Sample numbers 

correspond with concentration data given in Table 3-3. 

Table 3-3. Concentrations in Surface Soil (mg/kg). 

1The 95% UCL was estimated using the Land method (see Appendix C). 
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E 3-6 

RISK E

Risk = x 

Risk = x 

Risk = x 

Cs = Concentration of ChemX in soil (mg/kg) 

IRs = 

FI = 

CF = Conversion factor (1E-06 kg/mg) 

SA = 2/event) 

AF = 2) 

ABS = 

IRa = 3/hr) 

PEF = 3) 

ET = 

EF = Exposure frequency for receptor (days/year) 

ED = 

BW = 

AT = 

CSF = )-1 

XHIBIT 

QUATIONS 

Soil Ingestion 

Cs x CF x IRs x FI x EF X ED Oral CSF 

BW x AT 

Dermal Absorption 

Cs x CF x SA x AF x ABS x EF X ED Dermal-Adjusted CSF 

BW x AT 

Inhala tion of F ugitive D ust 

Cs x 1/PEF x IRa x ET x EF X ED Inhalation CSF 

BW x AT 

Tota l Risk = Sum of risks from each exposure pathway (soil + dermal + inhalation) 

Wh ere: 

Soil ingestion ra te for receptor (mg/day) 

Fraction ingested from contaminated source (unitless) 

Skin surface area available for exposure (cm

Soil to skin adherence factor for ChemX (mg/cm

Absorption factor for ChemX (unitless) 

Inhalation rate for receptor (m

Soil-to-air particulate emission factor (kg/m

Exposure time for receptor (hours/day) 

Exposure duration for receptor (years) 

Body weight of receptor (kg) 

Averaging time (years) 

Cancer slope factor (oral, dermal, inhalation) (mg/kg-day
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Table 3-4.  Exposure Parameters used in Point Estimate Analysis. 

Exposure 

Variable 

CTE 

Value 

R M E  

Value 

Units Reference 

IRs 50 100 mg/day CTE: U.S. EPA, 1997a, p. 4–25 

RME: U.S. EPA, 2001 

FI 0.5 1 unitless Site-specific 

CF 1E-06 1E-06 kg/mg Constant 

SA 3300 3300 cm2/event U.S. EPA, 2001, 50th percentile value for all adult 

workers—exposure to face, forearms, and hands 

AF 0.1 0.2 mg/cm2 CTE: U.S. EPA, 1998; Table 3.3, value for 

gardeners 

RME: U.S. EPA, 2001 

ABS 0.1 0.1 unitless U.S. EPA, 1998, default for semi-volatile organic 

compounds (SVOCs) 

IRa 1.3 3.3 
m3/hr 

U.S. EPA, 1997a, p. 5–24, outdoor worker hourly 

average: mean and  upper percentile 

PEF 1.36E+09 1.36E+09 kg/m3 U.S. EPA, 2001 

ET 8 8 hours/day Site-specific 

EF 200 225 days/year CTE: Site-specific assumption 

RME: U.S. EPA, 2001 

ED 5 25 years CTE: U.S. EP A, 1993, p . 6 

RME: U.S. EPA, 2001 

BW 70 70 kg U.S. EPA, 1993, p . 7 

AT 25550 25550 days constant 

CTE = central tendency exposure; RME = reasonable maximum exposure. 

Table 3-5.  Point Estimate Risks and Exposure Pathway Contributions. 

Risk Estimate 

by Exposure Pathway 
Inside Spill Area (n = 15) Outside Spill Area  (n = 20) 

CTE R M E  CTE R M E  

Soil Ingestion 6.5E-06 (43 %) 1.5E-04 (60 %) 1.7E-06 (43 %) 4.0E-05 (60 %) 

Dermal Absorption 8.6E-06 (57 %) 9.6E-05 (40 %) 2.3E-06 (57 %) 2.6E-05 (40 %) 

Inhalation 9.9E-10 (< 1 %) 1.4E-08 (< 1 %) 2.7E-10 (< 1 %) 3.8E-09 (< 1 %) 

Total Risk 1.5E-05 2.4E-04 4.1E-06 6.6E-05 

Example of % contribution:  % Soil for RME risk inside spill area = (Soil risk / Total risk) x 100% 

= (1.46E-04 / 2.42E-04) x 100% = 60% 
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Table 3-6.  Input D istributions for Exposure Variables used in 1-D MCA for Variability. 

Exposure 

Va riab le1 

Distribution 

Type 

Parameters2 Units Reference 

IR_soil Triangular 0, 50, 100 mg/day U.S. EPA, 1993, 2001 

SA_skin3 Lognormal 18150, 37.4 cm2 U.S. EPA, 1997a, Table 6-4 

(Total male/female body surface area) 

Absorption 

Fraction 

Uniform 0.1, 0 .2 mg/cm2 U.S. EPA, 2001; minimum truncation limit is 

professional judgment 

IR_air Lognormal 1.68, 0.72 m3/hour U.S. EPA, 1996, p.5–10 

EF Triangular 200, 225, 250 days U.S. EPA, 2001; truncation limits are 

professional judgment 

ED Lognormal4 11.7 , 7.0 years U.S. EPA, 1997b, Table 15-161 and U.S. EPA, 

2001 

(Mean value is based on average of total median 

tenure for professional specialty and farming, 

forestry, and fishing) 

Truncated 

Lognormal5 

14.0, 9.4, 

44.0 

years Site-specific survey data, used in refined 

1-D MCA 

BW Lognormal 71.75, 14 .2 kg U.S. EPA, 1997a, Tables 7-4 and 7-5; 

(Combined male/female body weight 

distributions) 

1All other exposure parameters are inputted as point estimates (see Table 3-4).

2Parameters for lognormal PDF are X ~ Lognormal (arithmetic mean, arithmetic standard deviation) unless otherwise stated.

Parameters for triangular PDF are X ~ Triangular (minimum, mode, maximum).  Parameters for uniform PDF are X ~ Uniform

(minimum, maximum).

3A point estimate of 0.189 was used to adjust the surface area skin (SA_skin) distribution, which is based on total body surface

area, to account for skin exposures limited to face, forearms, and hands (U.S. EPA, 1997a, Vol. I).

4Parameters for preliminary lognormal PDF for ED were converted from a geometric mean of 10 and a 95th percentile of 25.

5Parameters for site-specific lognormal PDF for ED are arithmetic mean, standard deviation, and upper truncation limit.


Table 3-7.  1-D M CA Risk Estimates using Preliminary Inputs. 

Cumulative 

Percentile 

Spill Area Risk 

50th 5.7E-05 

90th 1.3E-04 

95th 1.6E-04 

99th 2.4E-04 

99.9 th 3.9E-04 
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Figure 3-6.  Results of sensitivity analysis for preliminary 1-D MCA (Tier 2) 

showing the Spearman Rank correlations (see Appendix A and B) between input 

variables and risk estimates. 

Table 3-8.  Exposure Duration Survey Results. 

Survey Results (years) Summary Statistics 

24.9 20.3 17.2 n  20 

8.4 11.7 6.5 min 3.0 

3.0 4.7 16.5 max 44.2 

6.8 20.9 6.0 arithmetic mean 14.0 

18.5 10.6 18.8 standard dev 9.4 

9.1 12.7 11.7 median/GM 11.7 

7.2 44.2 GSD 1.8 

Table 3-9.  Refined Point Estimate and 1-D M CA Risk Estimates. 

Cumulative Percentile Spill Area  Risk 

Refined RME 
3.1E-04 

Point Estimate 

50th 6.7E-05 

90th 1.6E-04 

95th 2.1E-04 

99th 3.2E-04 

99.9th 5.3E-04 
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